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H I G H L I G H T S

Supercapacitor electrodes are typically porous.
Existing theory commonly treats electrodes as flat plates.
Inclusion of porosity enables accurate temperature prediction in supercapacitors.
Nondimensionalization enables broad applicability to predict performance.
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A B S T R A C T

This study presents a theoretical framework to model spatio-temporal heat generation rates and temperature
evolution in electrochemical double layer capacitors composed of porous electrodes during constant-current
cycling. Expressions for reversible and irreversible heat generation rates are derived based on porous electrode
theory. Temperature predictions obtained from the model are found to match experimental trends reported in
prior literature as well as quantitative results under various charge/discharge conditions. The model has been
applied to investigate the influence of electrode and separator porosity on the operating temperature inside
the capacitor during charge/discharge. Furthermore, scaling analysis of the electrothermal model leads to a
reduced number of meaningful dimensionless parameters governing electric potential, heat generation rate and
temperature rise in the capacitor. We explore the influence of these dimensionless parameters using detailed
numerical simulations.
1. Introduction

Electric double-layer capacitors (EDLCs) are primarily used in appli-
cations requiring rapid response and long cycle life such as regenerative
braking in hybrid electric vehicles [1–4]. They bridge the gap be-
tween conventional dielectric capacitors featuring high power densities
but low energy densities, and batteries offering high energy densities
but low power densities. EDLCs are typically charged/discharged at
high current densities, resulting in high volumetric heat generation
rates. The heat generation rate depends on numerous factors such as
operating conditions, cell design and constituent material properties.
Sustained high operating temperatures are known to cause acceler-
ated aging [5–9], high self-discharge rates [5,8,9], electrolyte evapora-
tion [8], and increased cell pressure [8]. The lifetime of a commercial
EDLC typically decreases by half for every 10 K rise in average op-
erating temperature [10]. To avoid such harmful effects, temperature
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rise in EDLCs must be mitigated by developing appropriate cooling
and/or load balancing techniques. However, in order to justify the
added cost, an accurate estimate of the heat generation rate under
various charge/discharge conditions is essential.

In this work, we present a one-dimensional electrothermal model
of a commercial EDLC composed of porous electrodes and a binary
symmetric electrolyte. Drawing from porous electrode theory, we de-
rive expressions for irreversible and reversible components of the heat
generation rate inside the supercapacitor cell as a function of space
and time. Detailed numerical simulations of porous electrodes were per-
formed, and the results are compared to experimental results reported
in prior literature. Thereafter, scaling analysis is performed to reduce
the number of model parameters to a few dimensionless parameters
that are important to robust thermal design and management.
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2. Background

2.1. Experimentally observed thermal behavior of supercapacitors

Experimental studies [6,9,11,12] have shown that continuous
constant-current cycling of EDLCs (under current ±𝐼𝑠) result in average
temperature increases from cycle to cycle with temperature oscillations
superimposed at the cycle frequency. For small operating currents
and/or efficient cooling at the device outer surface, the average tem-
perature settles into an oscillatory steady-periodic form. Otherwise,
the average temperature rises continuously due to Joule heating. The
temperature oscillations are attributed to reversible heating [12].

To gain a better understanding of the electrochemical conversion
processes of capacitors, Pascot et al. [13] and Dandeville et al. [14]
built a non-adiabatic calorimetric setup to measure temperature evo-
lution in an EDLC (carbon–carbon electrodes) and a hybrid pseudo-
capacitor (carbon–MnO2 electrodes) during galvanostatic cycling. The
carbon electrode exhibited exothermic behavior during charging and
endothermic behavior during discharging, which is typical of pure
EDLCs [9]. By contrast, the MnO2 electrode exhibited endothermic
behavior during charging and exothermic behavior during discharging,
which the authors associated with reversible redox reactions occurring
during charge/discharge. More recently, Munteshari et al. [15,16]
demonstrated experimentally that the heat generation rates depend
strongly on the electrode and electrolyte compositions in the EDLCs.

2.2. Thermal modeling of supercapacitors

Most past models either solved the heat diffusion equation [5,6,8,
12,17,18] or used the thermal circuit/lumped capacitance approach [5,
8] or finite element models. Because such models do not account for
reversible heat generation, the resulting temperature profiles do not
contain oscillations. The first model to consider EDLC reversible heating
was developed by Schiffer et al. [9] based on the entropic effect.
The authors considered that the entropy of ions (i) decreased during
charging as ions form the electrical double-layer (ordered) and (ii)
increased during discharging as the ions return to their original state
(disordered). The reversible heat generation rate �̇�𝑟𝑒𝑣 was expressed
as [9],

�̇�𝑟𝑒𝑣 = −𝑇 𝑑𝑆
𝑑𝑡

= −2
𝑇𝑘𝑏
𝑒

𝑙𝑛
(

𝑉𝐻
𝑉0

)

𝐼(𝑡) (1)

where 𝑆 is the total entropy of the EDLC system, 𝑇 is the average cell
temperature, and 𝑉𝐻/𝑉0 represents the factor reduction in ion volume
over the charging phase.

More recently, d’Entremont and Pilon [19,20] developed a spatio-
temporal model based on first principles by combining the heat diffu-
sion equation with the modified Poisson–Nernst–Planck (MPNP) model
to derive analytical expressions for irreversible and reversible heat gen-
eration rates in EDLCs comprised of flat plate electrodes, and Janssen
and van Roij [21] have provided a rigorous analysis of reversible
heating in the slow-charging limit as an improvement to the model
of Schiffer et al. [9]. To summarize, past models did not examine
the influence of electrode/electrolyte properties and design parameters
such as electrode thickness on the volumetric heat generation rate while
modeling electrodes as porous objects.

In this work, we address several fundamental questions, namely: (i)
What are the individual contributions of electrode and electrolyte to
the total heat generation rate inside a porous electrode? (ii) How do
operating conditions and supercapacitor design parameters influence
temperature evolution? All model parameters are defined in Tables 8
and 9.
2

Fig. 1. (a) Schematic of a complete supercapacitor cell consisting of 𝑁 sandwich units.
The magnified view of a single unit shows its major components: (1) aluminum current
collector, (2) two porous electrodes each length 𝐿𝑒, composed of activated carbon and
(3) a separator of length 𝐿𝑠. (b) An overview of the geometric parameters, operating
conditions, and electrode/electrolyte properties that influence temperature evolution in
an EDLC cell.

3. Analysis

3.1. Schematics and assumptions

Here, we consider a 1D model of the supercapacitor that neglects
heat spreading in the axial direction. Ref. [12] also found that the
thermal resistance in the axial direction is much smaller than in the
cross-plane direction. Fig. 1a illustrates a one-dimensional cell of thick-
ness 𝐿𝑑𝑒𝑣 consisting of 𝑁 identical sandwich EDLC units in series. Each
unit consists of two identical electrodes of thickness 𝐿𝑒 (left denoted
as electrode A and right as electrode B) sandwiching a separator of
thickness 𝐿𝑠. Each EDLC unit is charged and discharged at a constant
current density 𝐼𝑖𝑚(𝑡) imposed at the right current collector. In galvano-
static charge/discharge measurements, the imposed current density is
allowed to vary periodically with time as,

𝐼𝑖𝑚(𝑡) =

{

−𝐼0 for 2(𝑛 − 1)𝑡𝑐 ≤ 𝑡 ≤ 2(𝑛 − 1)𝑡𝑐 + 𝑡𝑐ℎ, (2)

+𝐼0 for 2(𝑛 − 1)𝑡𝑐 + 𝑡𝑐ℎ ≤ 𝑡 ≤ 2𝑛𝑡𝑐 .
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where 𝐼0 is the applied current density in A m−2, 𝑛 (= 1, 2, 3, . . . ) is
the cycle number, and 𝑡𝑐 is the cycle period. The cell voltage varies
periodically between 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥. Here, 𝛥𝑉 = 𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛 is referred
to as the potential window.

The model assumptions are as follows: (1) The electrolyte com-
pletely dissociates into its constituent ions. (2) The electrolyte is a 1:1
electrolyte (𝑧+ = −𝑧− = 1, 𝑐+,∞ = 𝑐−,∞ = 𝑐∞, 𝐷+,∞ = 𝐷−,∞ = 𝐷∞). (3)
Chemical reactions and ion adsorption due to non-electrostatic forces
are absent inside the electrode. (4) Bulk movement of the electrolyte,
i.e., advection, is negligible. (5) Steric effects due to ion–ion repulsion
are neglected. (6) All electrolyte and electrode properties are inde-
pendent of temperature. (7) ℎ is constant and independent of surface
temperature. (8) Porous electrode theory is sufficient to represent the
electrochemical and thermal behavior of the EDLC. (9) 𝐷∞ in the
electrolyte is independent of 𝑐∞ and is same in the separator and
electrode regions. (10) The electrolyte Seebeck effect of non-isothermal
electrolytes is neglected [22]. (11) Electrochemical performance of
each unit in the stack is identical.

3.2. Mathematical description

3.2.1. Governing equations for electrochemical transport
The governing equations for electrochemical transport in the sand-

wich EDLC are obtained from a study by Verbrugge et al. [23]. Con-
servation of charge requires that the electrical current 𝐼1 in the solid
electrode and ionic current 𝐼2 in the electrolyte phase at any location
𝑥 sum to the imposed current density 𝐼𝑖𝑚(𝑡),

𝐼𝑖𝑚(𝑡) = 𝐼1(𝑥, 𝑡) + 𝐼2(𝑥, 𝑡). (3)

he current densities in the solid and liquid phases of the electrode can
e expressed by Ohm’s law as

𝐼1(𝑥, 𝑡) = −𝜎
𝜕𝜙1(𝑥, 𝑡)

𝜕𝑥
,

𝐼2(𝑥, 𝑡) = −𝜅(𝑐)
𝜕𝜙2(𝑥, 𝑡)

𝜕𝑥

(4)

where the effective electrical conductivity of the solid phase 𝜎 is a
constant, and the electrolyte effective ionic conductivity 𝜅 is a function
of the local ion concentration 𝑐 and is given by [23]

(𝑐) =
2𝐹 2𝐷𝑐(𝑥, 𝑡)

𝑅𝑢𝑇0
. (5)

The complete set of governing equations for the electrochemical trans-
port variables are displayed in Table 1. Eqs. T1.a and T1.b represent
conservation equations for electrode phase potential 𝜙1(𝑥, 𝑡) and elec-
trolyte phase potential 𝜙2(𝑥, 𝑡) respectively, while Eqs. T1.c and T1.d
represent charge conservation and mass conservation respectively.

The area-normalized capacitance of the sandwich assembly, based
on the projected area of the electrodes, 𝐶𝐴 (F m−2) is evaluated as

𝐶𝐴 =
𝐼0𝑡𝑑𝑐
𝛥𝑉𝑑

(6)

where 𝑡𝑑𝑐 represents the discharge phase duration and 𝛥𝑉𝑑 is the cell
voltage drop during the discharge phase. The device equivalent series
resistance (ESR) is obtained by

𝐸𝑆𝑅 =
𝛥𝑉𝐼𝑅
2𝐼0

, (7)

here 𝛥𝑉𝐼𝑅 represents the cell voltage drop at the beginning of dis-
harge phase during the course of galvanostatic cycling.

.2.2. Governing equations for thermal transport
Because the Biot number is found to be 0.4 (see calculations in

upporting Information), temperature is considered to be non-uniform
3

nside the EDLC device, and is thus a function of both space and time,
(𝑥, 𝑡). In the absence of chemical reactions, the energy conservation
quation can be expressed as

𝑐𝑝
𝜕𝑇
𝜕𝑡

= 𝑘𝜕
2𝑇
𝜕𝑥2

+ �̇�𝑡𝑜𝑡, (8)

where �̇�𝑡𝑜𝑡 is the total volumetric heat generation rate in W m−3, that
an be interpreted as

̇𝑡𝑜𝑡 = �̇�𝑖𝑟𝑟 + �̇�𝑟𝑒𝑣. (9)

he irreversible component is the sum of Joule heating in the solid
lectrode and in the liquid electrolyte �̇�𝑖𝑟𝑟 = �̇�𝑖𝑟𝑟,𝑒𝑙𝑐 + �̇�𝑖𝑟𝑟,𝑒𝑙𝑦. Hence,
n the electrode regions (−𝐿𝑒 − 𝐿𝑠∕2≤𝑥≤−𝐿𝑠∕2 and 𝐿𝑠∕2≤𝑥≤𝐿𝑠∕2 +

𝑒) [20,24]

�̇�𝑖𝑟𝑟,𝑒𝑙𝑐 =
𝐼21
𝜎
; �̇�𝑖𝑟𝑟,𝑒𝑙𝑦 =

𝐼22
𝜅
. (10)

In the separator region, the imposed current density 𝐼𝑖𝑚(𝑡) is transported
entirely by the ions through the electrolyte. Thus, for (−𝐿𝑠∕2≤𝑥≤𝐿𝑠∕2)
[20],

�̇�𝑖𝑟𝑟 = �̇�𝑖𝑟𝑟,𝑒𝑙𝑦 =
𝐼20
𝜅
. (11)

An entropy constant 𝛽 is used to relate �̇�𝑟𝑒𝑣 to the rate of charge accumu-
lation at the electrode/electrolyte interface. Reversible heat generation
in the electrode regions (−𝐿𝑒 − 𝐿𝑠∕2≤𝑥≤−𝐿𝑒 and 𝐿𝑠∕2≤𝑥≤𝐿𝑠∕2 + 𝐿𝑒)
is expressed as

�̇�𝑟𝑒𝑣 = 𝛽
(

𝑎𝐶
𝜕(𝜙1 − 𝜙2)

𝜕𝑡

)

. (12)

whereas it is zero in the separator domain. Details of the derivation of
Eq. (12) are provided in the Supporting Information. Using Eq. (T1.c)
in Table 1, the reversible heat generation rate in the electrode domains
can also be expressed as

̇𝑟𝑒𝑣 = 𝛽
𝜕𝐼2
𝜕𝑥

. (13)

𝛽 formulated in this fashion was determined by Schiffer et al. [9] as
0.101 J C−1 by fitting analytical models with experimental measure-
ments. In summary, the heat generation rate �̇�𝑡𝑜𝑡 in the current collector,
electrode and separator regions is expressed as

�̇�𝑡𝑜𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐼20
𝜎𝐴𝑙

, −𝐿𝐴𝑙 − 𝐿𝑒 − 𝐿𝑠∕2 ≤ 𝑥 ≤ −𝐿𝑒 − 𝐿𝑠∕2

𝐼21
𝜎

+
𝐼22
𝜅

+ 𝛽 𝜕𝐼2
𝜕𝑥

, −𝐿𝑒 − 𝐿𝑠∕2 ≤ 𝑥 ≤ −𝐿𝑠∕2 & 𝐿𝑠∕2 ≤ 𝑥 ≤ 𝐿𝑒 + 𝐿𝑠∕2

𝐼20
𝜅
, −𝐿𝑠∕2 ≤ 𝑥 ≤ 𝐿𝑠∕2

(14)

Rewriting the heat diffusion equation, Eq. (8) for each individual
domain yields in the current collector domain (−𝐿𝐴𝑙 −𝐿𝑒 −𝐿𝑠∕2 ≤ 𝑥 ≤
−𝐿𝑒 − 𝐿𝑠∕2),

(𝜌𝑐𝑝)𝐴𝑙
𝜕𝑇
𝜕𝑡

= 𝑘𝐴𝑙
𝜕2𝑇
𝜕𝑥2

+
𝐼20
𝜎𝐴𝑙

. (15a)

In the electrode domains (−𝐿𝑒 − 𝐿𝑠∕2 ≤ 𝑥 ≤ −𝐿𝑠∕2) and (𝐿𝑠∕2 ≤ 𝑥 ≤
𝐿𝑒 + 𝐿𝑠∕2), Eq. (8) can be written as

(𝜌𝑐𝑝)𝑒𝑙𝑐,𝑎𝑣
𝜕𝑇
𝜕𝑡

= 𝑘𝑒𝑙𝑐,𝑎𝑣
𝜕2𝑇
𝜕𝑥2

+
𝐼21
𝜎

+
𝐼22
𝜅

+ 𝛽
𝜕𝐼2
𝜕𝑥

(15b)

while in the separator domain (−𝐿𝑠∕2 ≤ 𝑥 ≤ 𝐿𝑠∕2), Eq. (8) can be
expressed as

(𝜌𝑐𝑝)𝑠𝑒𝑝,𝑎𝑣
𝜕𝑇
𝜕𝑡

= 𝑘𝑠𝑒𝑝,𝑎𝑣
𝜕2𝑇
𝜕𝑥2

+
𝐼20
𝜅
. (15c)
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Table 1
Electrochemical transport equations for the three regions of a single sandwich unit.

Electrode A
(−𝐿𝑒 − 𝐿𝑠∕2 < 𝑥 < −𝐿𝑠∕2)

Separator
(−𝐿𝑠∕2 < 𝑥 < 𝐿𝑠∕2)

Electrode B
(𝐿𝑠∕2 < 𝑥 < 𝐿𝑠∕2 + 𝐿𝑒)

Eq.

𝜕𝜙1

𝜕𝑥
= − 𝐼𝑖𝑚 (𝑡)−𝐼2

𝜎
– 𝜕𝜙1

𝜕𝑥
= − 𝐼𝑖𝑚 (𝑡)−𝐼2

𝜎
T1.a

𝜕𝜙2

𝜕𝑥
= − 𝐼2

𝜅
𝜕𝜙2

𝜕𝑥
= − 𝐼2

𝜅
𝜕𝜙2

𝜕𝑥
= − 𝐼2

𝜅
T1.b

𝜕𝐼2
𝜕𝑥

= 𝑎𝐶 𝜕(𝜙1−𝜙2 )
𝜕𝑡

𝐼2 = 𝐼𝑖𝑚(𝑡)
𝜕𝐼2
𝜕𝑥

= 𝑎𝐶 𝜕(𝜙1−𝜙2 )
𝜕𝑡

T1.c

𝜖𝑒
𝜕𝑐
𝜕𝑡

= 𝐷𝑒
𝜕2𝑐
𝜕𝑥2

+ 𝑎𝐶
2𝐹

𝜕(𝜙1−𝜙2 )
𝜕𝑡

𝜖𝑠
𝜕𝑐
𝜕𝑡

= 𝐷𝑠
𝜕2𝑐
𝜕𝑥2

𝜖𝑒
𝜕𝑐
𝜕𝑡

= 𝐷𝑒
𝜕2𝑐
𝜕𝑥2

+ 𝑎𝐶
2𝐹

𝜕(𝜙1−𝜙2 )
𝜕𝑡

T1.d
3.2.3. Boundary and initial conditions
A summary of the boundary conditions at the current collector and

electrode/separator boundaries is displayed in Table 2. Subscripts 𝐴,
and 𝑠 in Eqs. (T2.a–T2.d) represent electrode A, electrode B and the

eparator respectively. Initially, the supercapacitor is assumed to be in
ompletely discharged state due to which the electrolyte concentration
s considered spatially uniform and both the solid phase potential and
he liquid phase potential in the electrode are zero throughout.

(𝑥, 0) = 𝑐∞ for − 𝐿𝑒 − 𝐿𝑠∕2 ≤ 𝑥 ≤ 𝐿𝑒 + 𝐿𝑠∕2. (16a)

𝜙1(𝑥, 0) = 𝜙2(𝑥, 0) = 0 for −𝐿𝑒−𝐿𝑠∕2 ≤ 𝑥 ≤ 𝐿𝑒+𝐿𝑠∕2. (16b)

The temperature is assumed to be spatially uniform initially,

𝑇 (𝑥′, 0) = 𝑇0 − 𝐿𝑑𝑒𝑣∕2 < 𝑥′ < 𝐿𝑑𝑒𝑣∕2. (17)

where 𝐿𝑑𝑒𝑣 is the thickness of the device which consists of 𝑁 number
of sandwich units. The boundary condition at the left end of the device
domain has been considered as,

−𝑘𝐴𝑙
𝜕𝑇
𝜕𝑥′

|𝑥′=0 = ℎ(𝑇∞ − 𝑇 (𝑥′ = 0, 𝑡)). (18)

Similarly, the right end boundary condition is

−𝑘𝐴𝑙
𝜕𝑇
𝜕𝑥′

|𝑥′=𝐿𝑑𝑒𝑣
= ℎ(𝑇 (𝑥′ = 𝐿𝑑𝑒𝑣, 𝑡) − 𝑇∞). (19)

Here, the ambient temperature 𝑇∞ is considered to be identical to the
initial temperature 𝑇0.

3.2.4. Constitutive relationships
The physical properties in the electrode and separator domains are

calculated using a weighted average,

𝑀𝑒𝑙𝑐,𝑎𝑣 = 𝜖𝑒𝑀𝑒𝑙𝑦 + (1 − 𝜖𝑒)𝑀𝑒𝑙𝑐

𝑀𝑠𝑒𝑝,𝑎𝑣 = 𝜖𝑠𝑀𝑒𝑙𝑦 + (1 − 𝜖𝑠)𝑀𝑠𝑒𝑝
(20)

where 𝜖𝑒 and 𝜖𝑠 represent electrode and separator porosity. The prop-
erty 𝑀 stands for density 𝜌, thermal conductivity 𝑘 and thermal diffu-
sivity 𝛼. The number of layers varies with device size.

In this study, 𝑁 number of sandwich units are stacked in series to
construct a device (schematic shown in Fig. 1a), which is very similar
in construction to the real-world supercapacitor device displayed in
Figure S1a. Here, 𝑁 is assumed to be 50 corresponding to a total
device thickness of 7.25 mm. Because the thermal resistance in the axial
direction is much smaller than in the radial direction [12], the device
can be represented by a 1D model.

3.2.5. Dimensional analysis
The electrothermal model described by governing equations listed

in Table 1 and Eq. (8) and the associated initial and boundary con-
ditions listed in Table 2 and Eqs. (16)–(19) contain 29 dimensional
variables 𝐿𝑒, 𝐿𝑠, 𝐿𝐴𝑙, 𝐿𝑑𝑒𝑣, 𝜙1, 𝜙2, 𝐼0, 𝐼2, 𝐼𝑖𝑚, 𝜎, 𝜎𝐴𝑙, 𝐹 , 𝑅𝑢, 𝑇0, 𝐷𝑒, 𝑐,
𝑐∞, 𝑎𝐶, 𝑡, 𝑥, (𝜌𝑐𝑝)𝑒𝑙𝑐,𝑎𝑣, (𝜌𝑐𝑝)𝑠𝑒𝑝,𝑎𝑣, (𝜌𝑐𝑝)𝐴𝑙, 𝑘𝑒𝑙𝑐,𝑎𝑣, 𝑘𝑠𝑒𝑝,𝑎𝑣, 𝑘𝐴𝑙, ℎ, 𝛽 and 𝑇 .
Following past studies [25,26], application of Buckingham-Pi analysis
to our electrothermal model yielded the non-dimensional space and
4

time variables given by Eq. (21a), 18 other independent dimensionless
variables given by Eq. (21b), and 5 dependent dimensionless variables
given by Eq. (21c).

𝑥∗ = 𝑥
𝐿𝑒

, 𝑡∗ =
𝑡𝐷𝑒

𝐿2
𝑒
. (21a)

𝜖𝑒, 𝜖𝑠, 𝐿∗
𝑠 =

𝐿𝑠
𝐿𝑒

, 𝐿∗
𝐴𝑙 =

𝐿𝐴𝑙
𝐿𝑒

, 𝐿∗
𝑑𝑒𝑣 =

𝐿𝑑𝑒𝑣
𝐿𝑒

,

𝐼∗𝑖𝑚 =
𝐼𝑖𝑚
𝐼0

, (𝜌𝑐𝑝)∗𝐴𝑙 =
(𝜌𝑐𝑝)𝐴𝑙

(𝜌𝑐𝑝)𝑒𝑙𝑐,𝑎𝑣
, (𝜌𝑐𝑝)∗𝑠𝑒𝑝,𝑎𝑣 =

(𝜌𝑐𝑝)𝑠𝑒𝑝,𝑎𝑣
(𝜌𝑐𝑝)𝑒𝑙𝑐,𝑎𝑣

,

𝑘∗𝐴𝑙 =
𝑘𝐴𝑙

𝑘𝑒𝑙𝑐,𝑎𝑣
, 𝑘∗𝑠𝑒𝑝,𝑎𝑣 =

𝑘𝑠𝑒𝑝,𝑎𝑣
𝑘𝑒𝑙𝑐,𝑎𝑣

, 𝜎∗ = 𝜎
𝜎𝐴𝑙

,

𝛱1 =
𝐼0𝐹𝐿𝑒
𝜎𝑅𝑢𝑇0

, 𝛱2 =
𝐼0𝐿𝑒

2𝐹𝐷𝑒𝑐∞
, 𝛱3 =

𝑎𝐶𝐷𝑒
𝜎

, 𝛱4 =
𝑘𝑒𝑙𝑐,𝑎𝑣

(𝜌𝑐𝑃 )𝑒𝑙𝑐,𝑎𝑣𝐷𝑒
,

𝛱5 =
𝐼0𝐿𝑒𝑅𝑢

𝐹𝐷𝑒(𝜌𝑐𝑃 )𝑒𝑙𝑐,𝑎𝑣
, 𝛱6 =

𝛽𝐹
𝑅𝑢𝑇0

, 𝛱7 =
ℎ𝐿𝑒
𝑘𝐴𝑙

.

(21b)

𝜙∗
1 =

𝜙1𝐹
𝑅𝑢𝑇0

, 𝜙∗
2 =

𝜙2𝐹
𝑅𝑢𝑇0

, 𝐼∗2 =
𝐼2
𝐼0

, 𝑐∗ = 𝑐
𝑐∞

, 𝑇 ∗ =
𝑇 − 𝑇0
𝑇0

.

(21c)

Here, the position vector 𝑥 is scaled by the electrode thickness 𝐿𝑒 while
the solid phase and liquid phase potentials are scaled by the thermal
voltage 𝑅𝑢𝑇0∕𝐹 which represents the voltage inducing electrical energy
equivalent to the thermal energy for an ion of valency 1 at ambient
temperature 𝑇0. The time 𝑡 is scaled by the characteristic time for ion
diffusion across the length of the porous electrode estimated as 𝜏𝑑 =
𝐿2
𝑒∕𝐷𝑒. The imposed current density 𝐼𝑖𝑚, solid phase current density 𝐼1,

liquid phase current density 𝐼2 are scaled by the magnitude of applied
current density 𝐼0. Consequently, the dimensionless imposed current
density 𝐼∗𝑖𝑚 takes a value of −1 during charging and +1 under discharge.
Finally, the ion concentration 𝑐(𝑥, 𝑡) and temperature change 𝑇 (𝑥, 𝑡)−𝑇0
are scaled by the bulk ion concentration 𝑐∞ and initial temperature
𝑇0 respectively. The resulting dimensionless governing equations for
the electrochemical model are shown in Table 3, and the associated
dimensionless boundary conditions are documented in Table 4.

The dimensionless number 𝛱1 scales the voltage across the length of
the electrode in the solid phase 𝐼0𝐿𝑒∕𝜎 by the thermal voltage 𝑅𝑢𝑇0∕𝐹 .
Similarly, the dimensionless number 𝛱2 scales the voltage across the
length of the electrode in the liquid phase 𝐼0𝐿𝑒∕𝜅𝑒 by the thermal
voltage 𝑅𝑢𝑇0∕𝐹 . 𝛱3 denotes the dimensionless volumetric capacitance
of the electrode. 𝛱4 is equal to the effective Lewis number for the
electrode which can be interpreted as the ratio of the characteristic time
for ion diffusion 𝜏𝑑 = 𝐿2

𝑒∕𝐷𝑒 to that for heat diffusion 𝜏𝑡ℎ = 𝐿2
𝑒∕𝛼𝑒𝑙𝑐,𝑎𝑣

in the electrode. The dimensionless number 𝛱5 represents the ratio
of the characteristic volumetric heat capacity 𝐶𝑑 = 𝐼0𝐿𝑒𝑅𝑢∕𝐹𝐷𝑒 to
that of the electrode (𝜌𝑐𝑝)𝑒𝑙𝑐,𝑎𝑣. Similarly, 𝛱6 scales the reversible heat
coefficient 𝛽 to the thermal voltage, and 𝛱7 is the effective Biot number
considering the characteristic length to be the electrode thickness 𝐿𝑒.
The dimensionless energy conservation equation becomes:

𝜕𝑇 ∗

∗ = 𝐹𝑜𝐴𝑙
𝜕2𝑇 ∗

+
𝛱1𝛱5

∗ 𝜎∗ (22a)

𝜕𝑡 𝜕𝑥∗2 (𝜌𝑐𝑃 )𝐴𝑙
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Table 2
Boundary conditions at interfaces between regions of a single sandwich unit.

Current collector
interface
(𝑥 = −𝐿𝑒 − 𝐿𝑠∕2)

Electrode A-separator
interface
(𝑥 = −𝐿𝑠∕2)

Electrode B-separator
interface
(𝑥 = 𝐿𝑠∕2)

Current collector
interface
(𝑥 = 𝐿𝑒 + 𝐿𝑠∕2)

Eq.

𝜙1|𝐴 = 0 𝜕𝜙1

𝜕𝑥
|𝐴 = − 𝐼𝑖𝑚 (𝑡)−𝐼2

𝜎
𝜕𝜙1

𝜕𝑥
|𝐵 = − 𝐼𝑖𝑚 (𝑡)−𝐼2

𝜎
𝜕𝜙1

𝜕𝑥
|𝐵 = − 𝐼𝑖𝑚 (𝑡)−𝐼2

𝜎
T2.a

𝜕𝜙2

𝜕𝑥
|𝐴 = − 𝐼2 |𝐴

𝜅
[𝜅 𝜕𝜙2

𝜕𝑥
]𝐴 = [𝜅 𝜕𝜙2

𝜕𝑥
]𝑠 [𝜅 𝜕𝜙2

𝜕𝑥
]𝑠 = [𝜅 𝜕𝜙2

𝜕𝑥
]𝐵

𝜕𝜙2

𝜕𝑥
|𝐵 = − 𝐼2 |𝐵

𝜅
T2.b

𝐼2|𝐴 = 0 𝐼2|𝐴 = 𝐼𝑖𝑚(𝑡) 𝐼2|𝐵 = 𝐼𝑖𝑚(𝑡) 𝐼2|𝐵 = 0 T2.c
𝜕𝑐
𝜕𝑥
|𝐴 = 0 𝐷 𝜕𝑐

𝜕𝑥
|𝐴 = 𝐷 𝜕𝑐

𝜕𝑥
|𝑠 𝐷 𝜕𝑐

𝜕𝑥
|𝑠 = 𝐷 𝜕𝑐

𝜕𝑥
|𝐵

𝜕𝑐
𝜕𝑥
|𝐵 = 0 T2.d
h
a
b
t
v
g
T
E
d

v
f
p
A
o
t
r

4
m

t
g
e

m
a
s
5
c
p
E
o
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o
h
t
a
t
t

in the current collector domain (−𝐿∗
𝐴𝑙 − 1 − 𝐿∗

𝑠∕2 ≤ 𝑥∗ ≤ −1 − 𝐿∗
𝑠∕2).

𝐹𝑜𝐴𝑙 can be represented by 𝑘∗𝐴𝑙
(𝜌𝑐𝑃 )∗𝐴𝑙

𝛱4. Similarly,

𝜕𝑇 ∗

𝜕𝑡∗
= 𝐹𝑜𝑒𝑙𝑐,𝑎𝑣

𝜕2𝑇 ∗

𝜕𝑥∗2
+𝛱1𝛱5(𝐼∗𝑖𝑚 − 𝐼∗2 )

2 +𝛱2𝛱5
𝐼∗22
𝑐∗

+𝛱5𝛱6
𝜕𝐼∗2
𝜕𝑥∗

(22b)

n the electrode domains (−1 − 𝐿∗
𝑠∕2 ≤ 𝑥∗ ≤ −𝐿∗

𝑠∕2) and (𝐿∗
𝑠∕2 ≤ 𝑥∗ ≤

+ 𝐿∗
𝑠∕2). Here, 𝐹𝑜𝑒𝑙𝑐,𝑎𝑣 = 𝛱4. Similarly,

𝜕𝑇 ∗

𝜕𝑡∗
= 𝐹𝑜𝑠𝑒𝑝,𝑎𝑣

𝜕2𝑇 ∗

𝜕𝑥∗2
+ 1

(𝜌𝑐𝑝)∗𝑠𝑒𝑝,𝑎𝑣

𝛱2𝛱5
𝑐∗

(22c)

n the separator domain (−𝐿∗
𝑠∕2 ≤ 𝑥∗ ≤ 𝐿∗

𝑠∕2). Here, 𝐹𝑜𝑠𝑒𝑝,𝑎𝑣 =
𝑘∗𝑠𝑒𝑝,𝑎𝑣

(𝜌𝑐𝑃 )∗𝑠𝑒𝑝,𝑎𝑣
𝛱4.

The boundary condition at the left end boundary (𝑥′∗ = −𝐿∗
𝑑𝑒𝑣∕2) is

iven by,
𝜕𝑇 ∗

𝜕𝑥′∗
|−𝐿∗

𝑑𝑒𝑣∕2
= 𝛱7𝑇

∗
−𝐿∗

𝑑𝑒𝑣∕2
. (23)

imilarly, the boundary condition at the right end boundary (𝑥′∗ =
∗
𝑑𝑒𝑣∕2) is given by,

𝜕𝑇 ∗

𝜕𝑥′∗
|𝐿∗

𝑑𝑒𝑣∕2
= −𝛱7𝑇

∗
𝐿∗
𝑑𝑒𝑣∕2

. (24)

.2.6. Method of solution
The dimensionless governing equations along with associated

oundary conditions shown in Tables 3 and 4 respectively were solved
ith uniform mesh size in both electrode and separator regions to

ompute the electrochemical transport variables 𝜙∗
1, 𝜙∗

2, 𝐼∗2 and 𝑐∗,
hile Eqs. (22), (23) and (24) were used to determine 𝑇 ∗. The results
epend only on the 18 independent dimensionless numbers defined in
q. (21a) and the ratio of porosity 𝜖𝑒

𝜖𝑠
. The obtained dimensionless vari-

bles were scaled to dimensional variables using equations described
n Eq. (21). The evolution in device centerline temperature (𝑥 = 0)
as characterized by two parameters: (i) the time-averaged irreversible

emperature rise 𝑇𝐾
𝑖𝑟𝑟

𝐾
𝑖𝑟𝑟 =

∫ 𝐾𝑡𝑐
(𝐾−1)𝑡𝑐

𝑇 (0, 𝑡)𝑑𝑡

𝑡𝑐
(25)

and the temperature oscillation amplitude 𝛥𝑇𝐾
𝑟𝑒𝑣 expressed as:

𝛥𝑇𝐾
𝑟𝑒𝑣 = 𝑇 [0, (𝐾 − 1)𝑡𝑐 + 𝑡𝑐ℎ] − 𝑇 [0, 𝐾𝑡𝑐 ]. (26)

Also, we define the spatially and temporally averaged heat generation
rate �̇�𝑖 (W m−3) as:

̇ 𝑖 =
1

(2𝐿𝑒 + 𝐿𝑠)(𝑡𝑐ℎ + 𝑡𝑑𝑐 ) ∫

𝑡𝑐ℎ+𝑡𝑑𝑐

0 ∫

(2𝐿𝑒+𝐿𝑠)

0
�̇�𝑖(𝑥, 𝑡)𝑑𝑥𝑑𝑡 (27)

4. Results and discussion

Simulations were performed for the set of operating and design
parameters shown in Table 8.

4.1. Dimensional model analysis

Fig. 2(a) shows that for an operating current density 𝐼0 = 50 A m−2,
the cell voltage rises linearly from 0 to 2.7 V during charging while in
5

the discharge phase, it first undergoes a drop of 0.23 V (corresponding
to a specific internal resistance value of 2.3 mΩ m2) and then declines
linearly to 0 V. The cycle period 𝑡𝑐 of 102 s is comparable to that
observed for a commercial EDLC composed of porous electrodes [27].
Fig. 2(b) shows the spatial variation of solid phase current density 𝐼1
and liquid phase current density 𝐼2 during charging at 𝑡 = 0.25𝑡𝑐 . At
any location, 𝐼1 + 𝐼2 = 𝐼𝑖𝑚. Furthermore, both 𝐼1 and 𝐼2 are symmet-
ric about the centerline, which is representative of pure double-layer
behavior.

The spatial variation of volumetric heat generation rates �̇�𝑖𝑟𝑟,𝑒𝑙𝑐 ,
�̇�𝑖𝑟𝑟,𝑒𝑙𝑦, �̇�𝑖𝑟𝑟, �̇�𝑟𝑒𝑣 and �̇�𝑡𝑜𝑡 halfway into the charge phase (𝑡 = 0.25𝑡𝑐) and
alfway into the discharge phase (𝑡 = 0.75𝑡𝑐) are shown in Fig. 2(c)
nd (d) respectively. The spatial variation of both �̇�𝑖𝑟𝑟,𝑒𝑙𝑦 and �̇�𝑖𝑟𝑟,𝑒𝑙𝑐 can
e observed to be greater within the electrodes compared to within
he separator. The large spatial variation can be attributed to spatially
arying 𝐼1 and 𝐼2 as shown in Fig. 2(b). In summary, the total heat
eneration rate varies considerably in space during charge/discharge.
he electrochemical performance and temperature evolution of the
DLC device was studied for different values of operating current
ensity 𝐼0. Fig. 2(e) shows the cell potential 𝑉𝑐𝑒𝑙𝑙(𝑡) = 𝜙1(2𝐿𝑒 + 𝐿𝑠,

𝑡) − 𝜙1(0, 𝑡) as a function of time 𝑡 for 𝐼0 = 30, 50 and 70 A m−2. The
ariation of device centerline temperature 𝑇 (0, 𝑡0) are shown in Fig. 2(f)
or 𝐼0 = 30, 50 and 70 A m−2, while the corresponding temperature
rofiles as a function of location inside the device is shown in Figure S5.
t all 𝐼0, the temperature rises rapidly in the beginning before reaching
scillatory steady-state at which point the convective heat loss equals
he irreversible heat generation rate. However, at low 𝐼0, the system
eaches steady state temperature much quicker.

.1.1. Comparison of temperature evolution with experimental measure-
ents

Fig. 3a displays the experimental temperature measurements ob-
ained on a commercially available 350 F EDLC charged/discharged
alvanostatically at ±15 A and cooled by natural convection on the
xternal surface.

Fig. 3(b) shows the numerical results obtained from the present
odel for 𝐼0 = 50 A m−2 and ℎ = 20 W m−2 K−1. 15 A current

pplied to charge/discharge the commercial BCA350F supercapacitor
tudied in Ref. [12] corresponds to an operating current density of
0 A m−2 as shown in Section 1.3 of the Supporting Information. A
omparison of Fig. 3(a) and (b) demonstrates that the predicted tem-
erature evolution closely resembles past measurements on commercial
DLCs both qualitatively as well as quantitatively. At all locations, the
verall temperature rises rapidly from cycle to cycle followed by grad-
al saturation. Furthermore, temperature oscillations are superimposed
nto the average temperature profile as a consequence of reversible
eat generation. At saturation, the total heat generation rate inside
he device equals heat dissipation rate to the ambient. The temper-
ture oscillations occurring at the cycle frequency can be attributed
o reversible heat generation. The oscillation amplitude is predicted
o be around 1.15 ◦C, which is close to 0.9 ◦C recorded by Schif-

fer [9] on the surface of a commercial 5000 F Nesscap EDLC during
galvanostatic cycling in a voltage window of 0.5 and 2.5 V. Although
the temperature profiles for porous electrodes resemble those of planar
electrodes [19,20], temperature oscillations are much larger than those
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Fig. 2. (a) Cell voltage 𝑉𝑐𝑒𝑙𝑙(𝑡) = 𝜙1(2𝐿𝑒 + 𝐿𝑠 , 𝑡) − 𝜙1(0, 𝑡) as a function of time during two consecutive charge/discharge cycles for a constant operating current density 𝐼0 = 50 A
m−2. The device operates in the voltage range of 0 to 2.7 V. (b) Spatial variation of solid phase current density 𝐼1 and liquid phase current density 𝐼2 halfway into the charging
phase at 𝑡 = 0.25𝑡𝑐 . Predicted heat generation rates �̇�𝑖𝑟𝑟,𝑒𝑙𝑐 (𝑥, 𝑡), �̇�𝑖𝑟𝑟,𝑒𝑙𝑦(𝑥, 𝑡), �̇�𝑖𝑟𝑟(𝑥, 𝑡), �̇�𝑟𝑒𝑣(𝑥, 𝑡) and �̇�𝑡𝑜𝑡(𝑥, 𝑡) as function of location 𝑥 at dimensionless time (c) 𝑡∕𝑡𝑐 = 0.25 and (d) 𝑡∕𝑡𝑐
= 0.75 for 𝐼0 = 50 A m−2. (e) Galvanostatic charge/discharge profiles at operating current density 𝐼0 = 30, 50 and 70 A m−2 in the voltage range of 0–2.7 V. (f) Predicted device
centerline temperature 𝑇 (0, 𝑡) as a function of time 𝑡 for continuous galvanostatic cycling at 𝐼0 = 30, 50 and 70 A m−2. The inset shows the device centerline temperature at 𝑡 = 𝑡0
(3000 s), 𝑇 (0, 𝑡0) as a function of 𝐼0.

Fig. 3. (a) Thermocouple temperature measurements at different positions of a BCAP350 F EDLC cycled at ± 15 A plotted as a function of time 𝑡 (reproduced from Figure 10(a)
of Ref. [12]). The inset shows a magnified view of the temperature profiles (reproduced from Figure 10(b) of Ref. [12]). In the figure, 𝑇𝑠𝑢𝑟 represents the surface temperature,
while 𝑇1, 𝑇2, 𝑇3 and 𝑇4 represent temperature at different radial positions proceeding in the radially outward direction from the center. (b) Numerically predicted temperature
evolution with time at positions 𝑥 = 0, 𝑥 = 𝐿𝑑𝑒𝑣∕6, 𝑥 = 𝐿𝑑𝑒𝑣∕3 and 𝑥 = 𝐿𝑑𝑒𝑣∕2 for 𝐼0 = 50 A m−2 and ℎ = 20 W m−2 K−1. The inset shows a magnified view of the temperature
profiles in the time range of 1500 and 2000 s.
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Table 3
Normalized field equations in the three regions of a single sandwich unit.

Left electrode
(−1 − 𝐿∗

𝑠∕2) < 𝑥∗ < −𝐿∗
𝑠∕2

Separator
−𝐿∗

𝑠∕2 < 𝑥∗ < 𝐿∗
𝑠∕2

Right electrode
𝐿∗

𝑠∕2 < 𝑥∗ < (1 + 𝐿∗
𝑠∕2)

𝜕𝜙∗
1

𝜕𝑥∗
= −𝛱1(𝐼∗

𝑖𝑚 − 𝐼∗
2 ) – 𝜕𝜙∗

1

𝜕𝑥∗
= −𝛱1(𝐼∗

𝑖𝑚 − 𝐼∗
2 )

𝜕𝜙∗
2

𝜕𝑥∗
= −𝛱2

𝐼∗2
𝑐∗

𝜕𝜙∗
2

𝜕𝑥∗
=−𝛱2(

𝜖𝑒
𝜖𝑠
)3∕2 𝐼∗2

𝑐∗
𝜕𝜙∗

2

𝜕𝑥∗
= −𝛱2

𝐼∗2
𝑐∗

𝜕𝐼∗2
𝜕𝑥∗

= 𝛱3

𝛱1

𝜕(𝜙∗
1−𝜙

∗
2 )

𝜕𝑡∗
𝐼∗
2 = 𝐼∗

𝑖𝑚
𝜕𝐼∗2
𝜕𝑥∗
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𝛱1
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𝜕𝑡∗
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𝜕𝑐∗
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𝛱1

𝜕(𝜙∗
1−𝜙

∗
2 )

𝜕𝑡∗
𝜖𝑒

𝜕𝑐∗

𝜕𝑡∗
= ( 𝜖𝑠

𝜖𝑒
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𝜕𝑥∗2
𝜖𝑒

𝜕𝑐∗

𝜕𝑡∗
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𝛱1
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1−𝜙

∗
2 )

𝜕𝑡∗
Table 4
Normalized boundary conditions at interfaces between regions of a single sandwich unit.

Current collector
interface
(𝑥∗ = −1 − 𝐿∗

𝑠∕2)

Electrode–separator
interface
(𝑥∗ = −𝐿∗

𝑠∕2)

Electrode–separator
interface
(𝑥∗ = 𝐿∗

𝑠∕2)

Current collector
interface
(𝑥∗ = 1 + 𝐿∗

𝑠∕2)

𝜙∗
1 = 0 𝜕𝜙∗

1

𝜕𝑥∗
|𝐿 = −𝛱1(𝐼∗

𝑖𝑚 − 𝐼∗
2 )

𝜕𝜙∗
1

𝜕𝑥∗
|𝑅 = −𝛱1(𝐼∗

𝑖𝑚 − 𝐼∗
2 )

𝜕𝜙∗
1

𝜕𝑥∗
|𝑅 = −𝛱1(𝐼∗

𝑖𝑚 − 𝐼∗
2 )

𝜕𝜙∗
2

𝜕𝑥∗
= −𝛱2

𝐼∗2
𝑐∗

𝑐∗ 𝜕𝜙∗
2

𝜕𝑥∗
|𝐿 = ( 𝜖𝑠

𝜖𝑒
)3∕2𝑐∗ 𝜕𝜙∗

2

𝜕𝑥∗
|𝑅 ( 𝜖𝑠

𝜖𝑒
)3∕2𝑐∗ 𝜕𝜙∗

2

𝜕𝑥∗
|𝐿 = 𝑐∗ 𝜕𝜙∗

2

𝜕𝑥∗
|𝑅

𝜕𝜙∗
2

𝜕𝑥∗
= −𝛱2

𝐼∗2
𝑐∗

𝐼∗
2 = 0 𝐼∗

2 = 𝐼∗
𝑖𝑚 𝐼∗

2 = 𝐼∗
𝑖𝑚 𝐼∗

2 = 0
𝜕𝑐∗

𝜕𝑥∗
= 0 𝜕𝑐∗

𝜕𝑥∗
|𝐿 = ( 𝜖𝑠

𝜖𝑒
)3∕2 𝜕𝑐∗

𝜕𝑥∗
|𝑅 ( 𝜖𝑠

𝜖𝑒
)3∕2 𝜕𝑐∗

𝜕𝑥∗
|𝐿 = 𝜕𝑐∗

𝜕𝑥∗
|𝑅

𝜕𝑐∗

𝜕𝑥∗
= 0
T
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for planar electrodes because of the higher reversible heat generation
rate caused by larger surface-to-volume ratio. These results highlight
the capabilities and advantages of the present electrothermal model
for porous electrodes, as it can predict realistic temperature profiles in
a computationally efficient manner based on coupled electrochemical
and transport phenomena within the EDLC devices and without relying
on empirical fitting parameters.

4.1.2. Influence of operating conditions and device design parameters

Fig. 4 illustrates the change in device electrochemical characteris-
tics and temperature rise during galvanostatic cycling as a result of
independent variation in electrode porosity 𝜖𝑒 and separator porosity
𝜖𝑠. As shown in Fig. 4(a) and (c), the device centerline temperature
rises more significantly with time for smaller 𝜖𝑒 corresponding to lower
effective ionic conductivity and larger volumetric heat generation rate
in the electrode region as illustrated by Eqs. (5) and (10). The device
centerline temperature at the end of 3000 s decreases from 100 ◦C to
0 ◦C as a result of increase in 𝜖𝑒 from 0.2 to 0.9. Furthermore, with
ise in 𝜖𝑒, the area-normalized device capacitance 𝐶𝐴 increases rapidly

at the beginning and then reaches saturation as illustrated in Fig. 4(c)
which can be attributed to higher effective contact surface area for
the electrolyte. The influence of separator porosity 𝜖𝑠 on the device
centerline temperature and device capacitance is shown in Fig. 4(b) and
(d). The device centerline temperature decreases from 70 ◦C to 36 ◦C
s a result of change in 𝜖𝑠 from 0.2 to 0.9 due to a resulting increase
n effective ionic conductivity in the separator region. However, the
evice capacitance 𝐶𝐴 remains unchanged at 1020 F m−2 because the
eparator is not electrically charged during cycling.

Table 5 summarizes the design rules for choosing system parameters
equired to attain low overall temperature rise and temperature oscilla-
ion amplitude in EDLCs during continuous galvanostatic cycling. First,
arge bulk electrolyte concentration 𝑐∞ and/or diffusion coefficient
∞ are essential for achieving high ionic conductivity and small heat
eneration rates. In case of large 𝑐∞ and/or 𝐷∞, although the overall
emperature rise is smaller as a consequence of low volumetric heat
eneration rate, �̇�𝑖𝑟𝑟, the temperature oscillation amplitude 𝛥𝑇𝑟𝑒𝑣 is
lightly larger due to longer cycle time period 𝑡𝑐 . A thick electrode helps
n achieving high capacitance but leads to high ESR resulting in rapid
ncrease in device centerline temperature.
7
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able 5
ummary of the influence of operating conditions, electrode/electrolyte properties and
evice geometry parameters on area-based capacitance 𝐶𝐴, cycle time period 𝑡𝑐 , device
enterline temperature 𝑇𝑖𝑟𝑟(0, 𝑡0), temperature oscillation amplitude 𝛥𝑇𝑟𝑒𝑣 (0, 𝑡0) and
eat generation rates �̇�𝑖𝑟𝑟 and �̇�𝑟𝑒𝑣 during galvanostatic cycling.
Increasing → 𝐼0 𝜎 𝑎𝐶 𝐷∞ 𝑐∞ 𝛽 𝛼𝑒𝑙𝑦 (𝜌𝑐𝑝)𝑒𝑙𝑦 ℎ 𝐿𝑒 𝑁

𝐶𝐴 – – ↑ ↑ ↑ – – – – ↑ –
𝑡𝑐 ↓ – ↑ ↑ ↑ – – – – ↑ –
𝑇𝑖𝑟𝑟(0, 𝑡0) ↑ – – ↓ ↓ – ↓ ↓ ↓ ↑ ↑

𝛥𝑇𝑟𝑒𝑣(0, 𝑡0) ↓ – ↑ ↑ ↑ ↑ – ↓ – ↓ –
�̇�𝑖𝑟𝑟 ↑ – – ↓ ↓ – – – – – –
�̇�𝑟𝑒𝑣 ↑ – – ↓ ↓ ↑ – – – ↑ –

4.2. Dimensionless model analysis

4.2.1. Illustration of scaling analysis
Table 6 summarizes the three sets of input parameters used for scal-

ing analysis. Case I was based on realistic system parameters described
by Verbrugge et al. [23]. The ionic conductivity of the electrolyte was
assumed to be that of 0.93 M TEABF4 salt in acetonitrile solvent at
25 ◦C. The input parameters in cases II and III were varied in a way
such that all 18 independent dimensionless numbers listed in Eq. (21a)
remain constant. Fig. 5(a) illustrates the cell voltage as a function
of time 𝑡 during a single galvanostatic charge/discharge cycle for all
hree cases. The cell voltage profiles featured different cycle periods
or different values of operating current density 𝐼0. Fig. 5(b) plots the
imensionless cell voltage 𝑉 ∗

𝑐𝑒𝑙𝑙 versus dimensionless time 𝑡∗, and the
dimensionless voltage profiles can be observed to overlap one another.

Similarly, Fig. 5(c) and (d) illustrate the dimensional analysis for
temperature profiles. The device centerline temperature is shown as a
function of time 𝑡 for all three cases in Fig. 5(c). As expected, higher
operating current density 𝐼0 is observed to lead to higher temperature.
However, when the results are plotted in terms of dimensionless tem-
perature versus dimensionless time, they all collapse onto a single curve
as shown in Fig. 5(d). Therefore, the dimensionless variables 𝑇 ∗(𝑥∗,
∗) and 𝑉 ∗

𝑐𝑒𝑙𝑙 (𝑡∗) depend only on the 18 independent dimensionless
arameters. The same observations were made for the dimensionless
olumetric irreversible and reversible heat generation rates �̇�∗𝑖𝑟𝑟 and �̇�∗𝑟𝑒𝑣
s shown in Figure S4.

.2.2. Parametric variation of dimensionless numbers
Although all 18 dimensionless parameters are integral to the model,
ll parameters except 𝛱1 to 𝛱7 are essentially ratios of properties
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Fig. 4. Computed (a) centerline temperature 𝑇 (0, 𝑡) as a function of time 𝑡 for 𝜖𝑒 ranging from 0.2 to 0.9 while maintaining 𝜖𝑠 constant at 0.5, (b) centerline temperature 𝑇 (0, 𝑡) as
a function of time 𝑡 for 𝜖𝑠 ranging from 0.2 to 0.9 while maintaining 𝜖𝑒 constant at 0.67. Computed (c) area-normalized capacitance 𝐶𝐴 and device centerline temperature 𝑇 (0, 𝑡0)
as a function of 𝜖𝑒 and (d) area-normalized capacitance 𝐶𝐴 and device centerline temperature 𝑇 (0, 𝑡0) as a function of 𝜖𝑠.

Fig. 5. Computed (a) cell voltage 𝑉𝑐𝑒𝑙𝑙 as a function of time 𝑡, (b) dimensionless cell voltage 𝑉 ∗
𝑐𝑒𝑙𝑙 as a function of dimensionless time 𝑡∗ during a single galvanostatic charge/discharge

cycle for cases I to III (Table 6). Computed (c) device centerline temperature 𝑇 (0, 𝑡) as a function of time 𝑡 and (d) dimensionless centerline temperature 𝑇 ∗(0, 𝑡∗) as a function of
dimensionless time 𝑡∗ for continuous galvanostatic cycling with parameters corresponding to case I to III (Table 6).
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Fig. 6. (a) Variation of device centerline temperature 𝑇 (0, 𝑡) for percentage change in value of dimensionless parameters (a) 𝛱1, (b) 𝛱2, (c) 𝛱3, (d) 𝛱4, (e) 𝛱5, (f) 𝛱6 and (g)
𝛱7 from their base values. The base values were calculated on parameters listed in Table 8, 𝛱1 = 0.0015, 𝛱2 = 2.540, 𝛱3 = 0.0034, 𝐿𝑒 = 1.16 × 104, 𝛱5 = 0.0172, 𝛱6 = 2.337
and 𝛱7 = 2.44 × 10−6.
Table 6
Input parameters for Cases I to III used to illustrate the scaling analysis demonstrated in Fig. 5. The dimensionless parameters 𝜖𝑒=0.67,
𝜖𝑠=0.50, 𝐿∗

𝑠=0.5, 𝐿∗
𝐴𝑙=0.4, 𝐿∗

𝑑𝑒𝑣=165, 𝐼∗
𝑖𝑚 = ±1, (𝜌𝑐𝑝)∗𝐴𝑙=1.3, (𝜌𝑐𝑝)∗𝑠𝑒𝑝,𝑎𝑣=0.95, 𝑘∗𝐴𝑙=633, 𝑘∗𝑠𝑒𝑝,𝑎𝑣=0.77 and 𝜎∗=1.5 × 10−9, 𝛱1=0.00153, 𝛱2=2.540,

𝛱3=0.0034, 𝐿𝑒=1.16 × 104, 𝛱5=0.0172, 𝛱6=2.337 and 𝛱7=2.44 × 10−6 are the same in all three cases.
– 𝐼0 (A m−2) 𝜎 (S m−1) 𝐷∞ (m2 s−1) 𝑘𝐴𝑙 (W m−1 K−1) 𝑘𝑒𝑙𝑐 (W m−1 K−1) 𝑘𝑒𝑙𝑦 (W m−1 K−1) 𝑘𝑠𝑒𝑝 (W m−1 K−1) ℎ (W m−2 K−1)

Case I 50 67 1 ×10−11 205 0.649 0.164 0.334 10
Case II 100 134 2 ×10−11 410 1.298 0.328 0.668 20
Case III 25 33 5 ×10−12 103 0.325 0.082 0.167 5
9
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Table 7
Summary of the influence of non-dimensional numbers on area-based capacitance 𝐶𝐴,
cycle time period 𝑡𝑐 , device centerline temperature 𝑇𝑖𝑟𝑟(0, 𝑡0), temperature oscillation
amplitude 𝛥𝑇𝑟𝑒𝑣 (0, 𝑡0) and heat generation rates �̇�𝑖𝑟𝑟 and �̇�𝑟𝑒𝑣 during galvanostatic
cycling.

Increasing → 𝛱1 𝛱2 𝛱3 𝛱4 𝛱5 𝛱6 𝛱7

𝐶𝐴 ↓ – ↑ – – – –
𝑡𝑐 ↓ – ↑ – – – –
𝑇𝑖𝑟𝑟(0, 𝑡0) – ↑ – ↓ ↑ – ↓

𝛥𝑇𝑟𝑒𝑣(0, 𝑡0) ↓ – ↑ ↓ ↑ ↑ –
�̇�𝑖𝑟𝑟 – ↑ – – – – –
�̇�𝑟𝑒𝑣 – – – – – ↑ –

Table 8
Parameters used in the simulations.

Quantity Value Units Ref.

Carbon electrode thickness 𝐿𝑒 50 μm [23]
Separator thickness 𝐿𝑠 25 μm [23]
Current collector thickness 𝐿𝐴𝑙 20 μm [23]
Number of sandwich units 𝑁 50 – –
Volumetric capacitance 𝑎𝐶 42 F cm−3 [23]
Initial bulk salt concentration 𝑐∞ 0.93 M [23]
Void volume of carbon electrodes 𝜖𝑒 0.67 – [28]
Void volume of separator 𝜖𝑠 0.5 – [28]
Bulk ionic conductivity 𝜅∞ at c∞ 0.67 mS cm−1 [23]
Solid phase conductivity 𝜎 0.521 mS cm−1 [23]
Base temperature 𝑇0 298 K –
Upper voltage limit 𝑉𝑢𝑝 2.7 V [20]
Total simulation time 𝑡0 3000 s –
Lower voltage limit 𝑉𝑙𝑜𝑤 0 V [20]
Aluminum density 𝜌𝐴𝑙 2700 kg m−3 –
Bulk electrolyte density 𝜌𝑒𝑙𝑦 1205 kg m−3 [20]
Electrode density 𝜌𝑒𝑙𝑐 600 kg m−3 [29]
Separator density 𝜌𝑠𝑒𝑝 492 kg m−3 [29]
Specific heat capacity of aluminum 𝑐𝑝,𝐴𝑙 900 J kg−1 K−1 [29]
Electrical conductivity of aluminum 𝜎𝐴𝑙 37 × 106 S/m
Bulk specific heat capacity of electrolyte 𝑐𝑝,𝑒𝑙𝑦 2141 J kg−1 K−1 [20]
Specific heat capacity of electrode 𝑐𝑝,𝑒𝑙𝑐 700 J kg−1 K−1 [29]
Specific heat capacity of separator 𝑐𝑝,𝑠𝑒𝑝 1978 J kg−1 K−1 [29]
Thermal conductivity of aluminum 𝑘𝐴𝑙 205 W m−1 K−1 [29]
Bulk thermal conductivity of electrolyte 𝑘𝑒𝑙𝑦 0.164 W m−1 K−1 [29]
Thermal conductivity of electrode 𝑘𝑒𝑙𝑐 0.649 W m−1 K−1 [29]
Thermal conductivity of separator 𝑘𝑠𝑒𝑝 0.334 W m−1 K−1 [29]

and/or dimensions and are less amenable to variation in practice.
Hence, we performed parametric analysis only for parameters 𝛱1 to
𝛱7. Fig. 6 shows the influence of changes in the value of dimensionless
parameters from the base values calculated from dimensional param-
eters listed in Table 8. Fig. 6(a) shows that the overall temperature
rises with time for all values of 𝛱1. However, the oscillation amplitude
in the temperature profiles varies significantly with 𝛱1 because as 𝛱1
increases relative to the dimensionless specific capacitance parameter
𝛱3, the electrode behaves more like a resistor and less like a capacitor.
Fig. 6(b) shows that the operating temperature rises more rapidly
with time for large values of 𝛱2. A large 𝛱2 corresponds to low
ionic conductivity or high ESR. Fig. 6(c) shows that an increase in
𝛱3 leads to rise in oscillation amplitude due to longer cycle time 𝑡𝑐 .
Fig. 6(d) shows the that for higher values of 𝛱4 (or 𝐿𝑒) the overall
temperature rises at a slow pace and reaches steady state value quickly.
Fig. 6(e) shows that an exclusive increase in 𝛱5 leads to rise in both
the average temperature and oscillation amplitude. Fig. 6(f) shows
that the oscillation amplitude increases with increase in 𝛱6 although
the average temperature remains constant. Fig. 6(g) exhibits that an
increase in 𝛱7 leads to decrease in average operating temperature while
keeping oscillation amplitude unchanged.

Table 7 summarizes qualitative changes in the device thermal char-
acteristics �̇�𝑖𝑟𝑟, �̇�𝑟𝑒𝑣, 𝑇𝑖𝑟𝑟(0, 𝑡0), 𝛥𝑇𝑟𝑒𝑣 caused by variation in the dimen-
sionless model parameters, 𝛱 to 𝛱 . Unlike the dimensional model
10
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Table 9
Nomenclature.

Symbol Description Units

𝑎𝐶 Capacitance per unit volume F cm−3

𝐴 Cross-sectional area of the electrode cm2

𝑐 Electrolyte concentration mol m−3

𝐶𝐴 Capacitance per unit projected area of the electrode F cm−2

𝐷 Electrolyte diffusion coefficient m2 s−1

𝐸𝑠𝑝 Area-specific energy density J m−2

𝐹 Faraday constant C
ℎ Convective heat transfer coefficient at device outer surface W m−2 K−1

𝐼𝑖𝑚(𝑡) Time-variant imposed current density A m−2

𝐼0 Absolute value of imposed current density A m−2

𝑘 Thermal conductivity W m−1 K−1

𝐿 Length m
𝑚 Cell body mass kg
𝑁 Number of sandwich units in a device –
𝑁𝑢 Nusselt number ( ℎ𝐷

𝑘𝑎𝑖𝑟
) –

𝑅𝑎 Rayleigh Number ( 𝑐𝑝,𝑎𝑖𝑟𝜌2𝑎𝑖𝑟𝑔𝛽(𝑇−𝑇𝑎𝑚𝑏 )𝐷
3

𝜆𝑎𝑖𝑟𝜇𝑎𝑖𝑟
) –

𝑃𝑠𝑝 Area-specific power density W m−2

�̇� Local volumetric heat generation rate W m−3

𝑅𝑢 Universal gas constant J mol−1 K−1

𝐸𝑆𝑅 Specific equivalent series resistance Ω m2

𝑡 Time s
𝑇∞ Ambient temperature K
𝑉 Voltage V
𝑥 Position along a single sandwich unit μm
𝑥′ Position along the device consisting of 𝑁 sandwich units μm
𝑧𝑖 Valency –

Greek symbols

Symbol Description Units

𝜖 Porosity –
𝜅 Electrolyte ionic conductivity S m−1

𝜙 Electric potential of a given phase V
𝜎 Electrode electrical conductivity S m−1

(𝜌𝑐𝑝) Volumetric heat capacity J m−3 K−1

𝛽 Entropy constant J C−1

𝜎 Electrical conductivity S m−1

Superscripts and subscripts

Symbol Description

𝑒 Refers to electrode
𝑠 Refers to separator
∞ Refers to bulk electrolyte
1 Refers to solid phase
2 Refers to electrolyte phase
𝑒𝑙𝑐, 𝑎𝑣 Refers to average over electrode solid and liquid phase
𝑠𝑒𝑝, 𝑎𝑣 Refers to average over separator solid and liquid phase
𝐴𝑙 Refers to aluminum current collector
𝑖𝑟𝑟 Refers to irreversible heat generation
𝑟𝑒𝑣 Refers to reversible heat generation
𝑑𝑒𝑣 Full device consisting of multiple sandwich units
𝑐ℎ Charge phase
𝑑𝑐 Discharge phase
𝑐 One complete charge/discharge cycle
𝑚𝑖𝑛 Minimum limit
𝑚𝑎𝑥 Maximum limit

in which �̇�𝑖𝑟𝑟 is a function of multiple parameters (𝐼0, 𝐷∞ and 𝑐∞),
n the case of the dimensionless model, it is a function of only 𝛱2.
imilarly, in the dimensional model, �̇�𝑟𝑒𝑣 is a function of 𝐼0, 𝐷∞, 𝑐∞,

𝛽 and 𝐿𝑒, while in the dimensionless model, it is a function of only
𝛱6. Thus in summary, scaling analysis of the electrothermal model not
only leads to a reduction in the number of independent parameters but
also consolidates the dependencies of the volumetric irreversible and
reversible heat generation rates.

5. Conclusions

The present study presents a new continuum model based on porous
electrode theory for simulating coupled electrochemical and thermal
transport during constant-current charging and discharging of EDLCs
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composed of identical porous electrodes and binary, symmetric elec-
trolyte. Expressions for irreversible and reversible heat generation rates
are rigorously derived. The results compare favorably with past mea-
surements [9,12] both qualitatively and quantitatively. To the best
of our knowledge, the present model is the first to comprehensively
account for the electrode/electrolyte properties, geometric parameters
and operating conditions in evaluating the temperature rise during
galvanostatic charge/discharge processes in EDLCs. Scaling analysis
performed on the electrothermal model reduced the problem from
29 independent dimensional parameters to 23 physically meaningful
dimensionless similarity parameters. Such dimensionless parameters
provide a framework that can be used to develop design rules and
thermal management strategies for commercial EDLCs.
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